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Abstract 

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the third leading cause of cancer death in 

both men and women in the US. Colorectal cancer screening (CRCS) serves an important role in the early detection of 

colorectal cancer and reduces the mortality rate. It is recommended that people aged 50 and older should take CRCS 

regularly. However, not all people follow the guideline. The state-level CRCS prevalence can be estimated from the 

Behavioral Risk Factor Surveillance System (BRFSS). Efforts to advocate CRCS are often conducted locally, often at the 

level of county or county equivalent. Knowing county-level CRCS prevalence can be important to making relevant 

policies. However, BRFSS does not provide county-level CRCS prevalence estimates. We examined the possibilities of 

using BRFSS data for county-level estimates with small area estimation (SAE) techniques. Demographic information 

from both BRFSS and U.S. Census population file were used in our models. In addition, county attributes related to 

education levels and house incomes were used to improve the estimates. A random spatial effect was also added to 

capture other county attributes not included in the model. We took the 2012 Missouri BRFSS (MO-BRFSS) data as an 

example to get county-level CRCS prevalence estimates. To evaluate the results, estimates from 2011 Missouri County 

Level Study (MO-CLS), which is a BRFSS-like survey but collected hundreds of responses for each county in Missouri, 

was used as “true” values. The evaluation results indicated the inclusion of county attributes improved the estimates 

significantly, but not the random spatial effect. The estimates from MO-BRFSS showed similar patterns as those from 

MO-CLS but less accurate. 
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Introduction 

Background about Colorectal Cancer 
Screening 

     Colorectal cancer (CRC) is the third most commonly 
diagnosed cancer and the third leading cause of cancer 
death in both men and women in the U.S. CRC incidence 
rates increased from 1975 through the mid-1980s [1]. 
But have since decreased with the exception of a slight, 
unexplained bump in rates between 1996 and 1998. 
Declines have accelerated during the past few years. 
The incidence rates decreased by more than 4% from 
2008 to 2010. The large declines over the past decade 
have largely been attributed to the detection and 
removal of polyps as a result of increased colorectal 
cancer screening (CRCS). As for the mortality rates, they 
have been decreasing along with the incidence rates. 
From 2001 to 2010, CRC mortality rates decreased by 
about 3% per year, compared to declines of about 2% 
per year in the 1990s. The declines in mortality rates 
have been attributed to improvements in treatment, 
changing patterns in CRC risk factors and screening. 
CRCS plays an important role in the early detection of 
CRC, which can provide patients higher chance of 
survival. When screening identifies a colorectal tumor 
in its early stages, the cost of treatment is often much 
less expensive than if the tumor is detected later in the 
course of the disease. 
 
     CRCS is important but unfortunately, not everyone 
takes the screening as recommended, which suggest 
people over 50 years old should take regular screenings. 
The possible reasons may include the unawareness of 
the screening, the cost of screening, the nature of the 
screening procedures (some people feels uncomfortable 
with them), etc. Knowing the current CRCS prevalence 
can be important for policymakers making plans to 
protect people against CRC. Efforts to promote CRCS are 
generally conducted locally, often at the level of the 
county or county equivalent. Counties with low CRCS 
prevalence should be monitored and policies should be 
made to encourage people to participate CRCS. 
However, estimates of CRCS prevalence are often 
available at the state level, not at finer scales like county 
level. 
 

Existing Surveys Covered CRCS in Missouri 

     There are two kinds of regularly conducted surveys 
in Missouri which contain information about CRCS 
prevalence. One is the Behavioral Risk Factor 
Surveillance System (BRFSS) and the other one is 
Missouri County-Level Study. 
 
     The Behavioral Risk Factor Surveillance System 
(BRFSS) is the nation’s premier system of health-related 
telephone surveys that collect state data about U.S. 
residents regarding their health-related risk behaviors, 

chronic health conditions, and use of preventive 
services [2]. Since its creation by the U.S. Centers for 
Disease Control and Prevention (CDC) in 1984, the 
BRFSS has been conducted annually in all 50 states as 
well as the District of Columbia and three U.S. 
territories. The Health and Behavioral Risk Research 
Center at the University of Missouri-Columbia collects 
BRFSS data for Missouri. To adjust the sampling bias 
and make sure the data collected are representative of 
the population for the state, raking (iterative 
proportional fitting) was used to accomplish this goal 
[3]. The sample weight for a particular sample 
generated by raking can be interpreted as the inverse 
probability of a “likely” or “unlikely” the person been 
selected. For every two years, questions related to CRCS 
prevalence are asked in Missouri. For interviewers aged 
50 and older, they were asked if they never had a 
sigmoidoscopy or colonoscopy, which are two major 
types of CRCS. Based on responses to this question, 
CRCS prevalence for Missouri can be obtained. We 
denote the Missouri BRFSS data as MO-BRFSS data. In 
2012, there were 5,310 adults interviewed by randomly 
selected household landline telephone numbers. 
Additionally, 1,403 randomly selected adult cellphone-
mostly users participated in the interview. A CRCS 
prevalence of 66.5% was reported for Missouri. 
 
     The Missouri County-level Study, which we denote as 
MO-CLS, followed standard CDC BRFSS methods and 
techniques. The questionnaire used for the interviews 
contains questions from the BRFSS and CDC Adult 
Tobacco Survey (ATS). Different from MO-BRFSS which 
only aims state-level estimates, MO-CLS aims at 
producing accurate county-level estimates by collecting 
much more data for each county. For example, the 2011 
CLS goal was to complete 47,200 landline interviews 
with Missouri adults ages 18 and older [4]. The goals 
were as follows: 
 800 interviews in Jackson County and St. Louis County 

with 400 interviews among African Americans and 
other races and 400 interviews among whites. 

 800 interviews in St Louis City with 400 interviews 
among African Americans and 400 interviews among 
whites and other races. 

 400 completed interviews in the rest of 112 counties. 
 
     Additionally, a goal was established to obtain 4,720 
interviews with adult cellphone-only users. Data from 
cell phone interviews were combined with landline data 
for analysis at the state and regional levels. Between 
January and December 2011, interviews were 
completed with 47,261 landline and 4,828 cell phone 
only users, totaling 52,089 completed interviews. The 
same raking method was used for MO-CLS to produce 
weighting variables. Note that the weighting variable in 
MO-BRFSS is to make survey sample represent the 
whole Missouri State, while the weighting variable in 
MO-CLS makes the survey sample represent each 
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county in Missouri, which produce feasible ways to 
conduct county-level estimates. For interviewers aged 
50 and older, they were asked if they never had a 
sigmoidoscopy or colonoscopy, which is the same as the 
question asked in MO-BRFSS. At the state level, 2011 
MO-CLS reported CRCS prevalence as 66.2%, which is 
close to 2012 MO-BRFSS result. The MO-CLS is ideal for 
producing county-level prevalence estimates, but it is 
conducted less frequently as MO-BRFSS. Currently, MO-
CLS were only conducted for years 2003, 2007, 2011 
and 2016. 
 

Aim of the Paper 

     It is useful to get county-level CRCS prevalence 
estimates and MO-CLS can directly serve the purpose. 
However, the discontinuity in conducting years limits us 
from monitoring changes over time. MO-BRFSS can give 
us the state-level estimates every two years, but not for 
the county-level estimates. There are many counties in 
Missouri have zero or rather small sample sizes in MO-
BRFSS data, which prevent us from getting county-level 
estimates directly. In this paper, we want to examine 
the possibilities of using MO-BRFSS data to produce 
county-level estimates. The process of estimating 
prevalences for counties with no samples falls into the 
category of small area estimation (SAE) problems. Rao 
(2015) is a classical text contains various methods for 
SAE problems [5]. SAE techniques have been widely 
used in survey context when one tries to estimate the 
quantity of interest for an area with no sample 
available. When applying SAE methods, the survey 
sampling design should be considered to reduce biases 
in the estimates. 
 
     Once county-level estimates were obtained from MO-
BRFSS data, we will use MO-CLS to evaluate the results. 
The county information is no longer publicly available 
for MO-BRFSS data after 2012. In addition, the 2016 
MO-CLS data is not available at the time of writing this 
paper. Due to these limitations, we decided to use 2011 
MO-CLS data and 2012 MO-BRFSS data as two sources 
to produce county-level CRCS prevalence estimates. The 
state-level estimate shows little difference between 
2011 MO-CLS and 2012 MO-BRFSS. Thus we assume the 
prevalence stay unchanged from 2011 to 2012. Due to 
much large sample sizes in 2011 MO-CLS, its estimates 
are treated as “true” values. Estimates from MO-BRFSS 
with SAE methods will be compared to those “true” 
values and results will be evaluated. 
 
 
 
 

 

Review of SAE Methods for Surveys 

     We briefly review some SAE methods used for survey 
analysis which have already been proposed in the 
literature. As in a typical survey analysis, population 
totals or population proportions (prevalences) are often 
quantities of interest. Our purpose is to use survey 
samples to estimate population truth. There are two 
types of approaches used in practice. The first one is the 
design-based approach and the other one is the model-
based approach. 
 
     The design-based approach is carried out based on 
distributions of the individuals that could appear in the 
survey. Weighting variables can be interpreted as the 
inverse of the inclusion probability for each individual. 
In MO-BRFSS or MO-CLS, the weights obtained from 
raking are normalized so that the sum of the weights 
equals the true population size. In other words, the 
weights for one individual means how many people he 
(she) is representing for in the whole population. 
Design-consistent estimators can be generated by the 
weighted average/sum of sample quantities based on 
weighting variables. The Horvitz–Thompson (HT) 

estimator is commonly used in practice [6]. Let ikY  be a 

binary health outcome for individual k  in county i  (

1,...,i I and 1,..., ik N ), where iN  is the 

population size for county i  and usually known. In a 

survey, a sample of size in  is drawn from each county i  

with sample values iky . The true prevalence for each 

county i , denoted as iP , can be calculated as  

1
.

1

 


Ni
P Yi ikN ki

             (1) 

Suppose the calculated inclusion probability for 

individual k  in county i  is ik  and the weight is

1/ik ikw  . For normalized weights, 
1
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ik i

k
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 . 
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where 

e , 'ik ik  is the sampling probability for the pair of 

individuals ik  and 'ik . For a description of 

constructing , 'ik ik , see Lumley (2010, Section 7.2) [7]. 

The HT estimator is a design-unbiased estimator of iP  

and often called the direct estimator since it only uses 
the responses from the area of interest. One limitation 
for HT method is that the estimator cannot be 
calculated for area with no samples. Other design-based 
methods use a model for construction of the estimators. 
Pfeffermann (2013) [8] contains an overview of recent 
developed design-based methods which can produce 
estimates for non-sampled areas [8]. 
 
     The model-based approach assumes a hypothetical 
infinite population from which the responses are 
drawn. The model-based approach is appealing since 
standard statistical modeling machinery can be applied. 
However, it is difficult to implement since the sampling 
mechanism needs to be modeled. One needs to include 
all variables used in the sampling process, which are 
often not available. Even if available, the complex 
survey itself is hard to model. Gelman [9] describes the 
issues. Despite of the issues, developing model-based 
approaches has been an active research area [9]. 
Mercer, et al. [10] compares several existing methods 
[10]. The simplest model is the binomial regression 
model which assumes  
  

    0| , and logiti i i i i i iy P Binomial n P P u      (4) 

where
1

 


n
k

y yi ik
k

, 0  is the overall intercept, iu  is the 

spatial effect for county i  and i  is random error, 

which is similar to a BYM mode [11]. However, such 
model completely ignores the survey design. Many 
methods has been proposed for SAE methods which 
account for survey design by either include the variance 

estimate   ˆ HT

iVar p  as part of the model, for example 

the logit-normal model [10], the arcsine model [12], or 
directly modeling the sample weighting variable, for 
example using penalized splines [13], or combining 
pseudo-likelihood with the effective sample size 
calculated by weighting variable [14], or just regressing 
the response variable on a Gaussian process function of 
the weighting variable [15]. There are still many other 
approaches that we have not mentioned. 
 
     Unfortunately, the weighting variable is not available 
in MO-BRFSS data in terms of producing county-level 
estimates. Thus the model-based approaches mentioned 
above with weights being part of the model cannot be 
applied. Similar to our situation, Cadwell, et al. [16] 

used Bayesian multilevel models to estimate diabetes 
prevalences for 3,141 counties in the US using BRFSS 
data [16]. Estimating MO county-level CRCS prevalences 
is essentially the same problem. Survey respondents 
were classified into J  categories based on age, race 

and sex. Because of low prevalences of diabetes (5.5% 
national wide), they assume the number of sample 
people who have diabetes for county i  and category j , 

namely ijy  follows a Poisson distribution  

  

 | ; 1,..., and 1,...,ij ij ij ijy P Poisson n P i I j J      (5) 

Where I  is the number of counties, ijn  is the sample 

size and ijP  is the prevalence for category j  of county

 i . They further model ijP  through  

  

 log ,ij ijP         (6) 

 where ( , ..., ) '
1

 i iJi
β  follows a multivariate normal 

distribution with mean  s i
  and covariance matrix Σ . 

Here  s i  denote the state where county i  belongs to. 

They assumed independent normal priors on  s i
 s and 

Inverse-Wishart prior on Σ . From the posterior 
samples, the posterior predictive distributions of 

county-level prevalence iP  was obtained with the use 

of true population sizes from Census data. The mean of 
the posterior predictive distribution was used as the 

estimate of iP . 

 

Outline of our approach 

     We used Cadwell, et al. (2010) [16] as our main 
reference with modifications to address our problem 

[16]. Firstly, we assumed binomial distribution for ijy  

since the CRCS prevalence is around 60% in our case, 
where Poisson approximation may not work well. 
Secondly, we avoided modeling the dependence 
between different categories of people and assigning an 
Inverse-Wishart prior on the covariance matrix. 
Compared to their data, we only have 115 counties with 
relatively much smaller sample size. Thus the 
covariances between different categories will be hard to 
estimate. For simplicity, we assumed independence 
among categories. Lastly, we added county-level 
covariates: the percentage of people below high school 
education level, the percentage of people below 9th-
grade education level, the percentage of people above 
bachelor education level and the median house income. 
The inclusion of these variables improved our 
estimates. 
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Methods 

Data 

     Missouri is comprised of 114 counties and the City of 
St. Louis. For the 2012 MO-BRFSS data, we only selected 
people over 50 years old as 50 is the recommended age 
to start CRCS, which left us with 4,605 samples. After 
removing unknown counties and unknown responses 
about CRCS, we had a total of 3,807 samples for 
analysis. In MO-BRFSS study, the sample size from each 
county was too small to make conclusive estimates by 
county. Therefore, those areas were clustered into 
seven MO-BRFSS regions shown in Figure 1. Table 1 
contains the sample size for each region. These seven 
regions are the smallest area units where survey results 
are reported. Figure 2 shows the sample sizes for each 
county. Although 3,807 observations seem quite a lot at 
the state level, it is not enough to get estimates for every 
county since most samples were from a highly 
populated urban areas, in which case we have highly 
unbalanced distribution of survey samples across all 
counties. For example, there were 37 counties in MO 
have zero sample (white color) and only 15 counties 
had more than 50 samples, where 50 is the minimum 
sample size that CDC will report the prevalence for a 
Chronic Disease indicator. Therefore, getting accurate 
county-level CRCS prevalence estimates is quite 
challenging. 
 

 

Figure 1: 2012 MO-BRFSS regions. 

 

Region Sample Size 
Kansas City Metro 767 

St. Louis Metro 1030 
Central 493 

Southwest 485 
Southeast 433 
Northwest 355 
Northeast 244 

Table 1: 2012 MO-BRFSS regions in MO with sample 
sizes. 

 

 

 

Figure 2: 2012 MO-BRFSS sample sizes counties in 
Missouri. 

 
 
     For 2011 MO-CLS data, more samples were obtained 
for each county. After cleaning the data, we have 35,590 
samples for people over 50 years old with valid county 
and demographic information. The sample sizes for all 
counties ranged from 209 to 706, with a median 300. 
Weighting variables were also created for county-level 
estimates in this survey. The availability of the 
weighting variable allows us to get direct county-level 
estimates using the HT estimator. With large sample 
size in MO-CLS, we may assume the direct estimates are 
accurate. 
 
     The U.S. Census Bureau publishes population 
estimates by demographic characteristics for all 
counties. We used 2012 Census county projections to 
obtain the estimates for the population size for different 
demographic categories in each county in Missouri, 
which were used for cross-classify 2012 MO-BRFSS data 
later on. Here we ignore the uncertainty of the 
population sizes. These population size information will 
be used to adjust our estimates to match the population 
distribution for each county. 
 
     The county attribute variables can be obtained using 
SEER*Stat software [17]. It provides a convenient, 
intuitive mechanism for the analysis of Surveillance, 
Epidemiology, and End Results Program (SEER) and 
other cancer-related databases. The SEER*Stat 
calculated the county attribute variables for 2010-2014 
based on the Census American Community Survey 
(ACS) 5-year files. We used the five years 2010 to 2014 
as the year 2012 is the middle year of the span, which 
we would expect less bias. Note that year 2012 is the 
one we want to study. 
 
 

BRFSS
Regions

Kansas City Metro

St. Louis Metro

Central

Southwest

Southeast

Northwest

Northeast

10

100
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Prevalence Estimator 

Respondents in MO-BRFSS were classified into different 
categories based on their county at diagnosis, age (50–
64, 65–74, 75+), gender (male, female) and race (white, 

non-white). For each county i , 1,...,i I  where 

115I   in Missouri, the three age groups, two genders 
and two races yield twelve different categories. Let 

12J   be the total number of categories and we use 

the following notations for each category j , 1,...,j J , 

in county i : 

• ijn  : the MO-BRFSS sample size, which is the number 

of respondents; 

• ijy  : the number of respondents who have had CRCS 

out of all ijn  respondents; 

• ijN  : the true population size based on 2010 Census 

data; 

• ijY  : the true population total who have had CRCS out 

of ijN  people; 

• ijP  : the true proportion of people who have had 

CRCS. 

In the variables above, ijn  and ijy  are known through 

our MO-BRFSS data. If 0ijn  , we set 0ijy  . ijN  is 

also known from 2010 Census data. The other two 

quantities ijY  and ijP  are unobserved. For county i , the 

unobserved prevalence is:  
  

1
,

1

 


 

J
Yijj

Pi J
Nijj

         (7) 

 which is the quantity we are interested in. 
 

     We define ij ij ijZ Y y   to be the total number of 

people in 2012 who have had CRCS in county i  

category j  but not included in the survey. Then (7) is 

equivalent to  
  

( )
1

.

1

 


 

J
Z Yij ijj

Pi J
Nijj

      (8) 

 

Bayesian Binomial Regression 

     We used a Bayesian binomial regression framework 

to estimate ijP . To be specific, we assume ijy  follows a 

Binomial distribution with number of trials ijn  and 

success probability ijP :  

  

 Binomial , .ij ij ijy n P      (9) 

 

 A logit transformation   log / 1ij ij ijv P P   was 

used in the second level regression. With all available 

covariates, ijv  can be modeled as:  

  

  1 1 2 2 3 3 4 4 ,ij j i i i i i ijr i
v x x x x u                (10) 

 where 
•   is the overall intercept; 

• 
 r i

  is the regional effect of region    1,2,...,7r i   

(recall that we have seven BRFSS regions for 2012 MO-
BRFSS); 

• j  is effect for the j th demographic category; 

• 1ix  is the percentage of people below high school 

education level, with coefficient 1 ; 

• 2ix  is the percentage of people below 9th-grade 

education level, with coefficient 2 ; 

• 3ix  is the percentage of people above bachelor 

education level, with coefficient 3 ; 

• 4ix  is the median house income, with coefficient 4 ; 

• iu  is a random spatial effect which accounts for extra 

county level variability not included in our model if 
exist; 

• ijkl  is the over dispersion term accounting for extra 

variability not included in our model. 

For 
 r i

 s and j s, sum-to-zero constraints are added 

for identifiability issues. 
 
It is helpful to write our model in vector notation. We 

define  1  ',  ...,  ' 'Iy y y where 1( ,..., )i i iJy y y . 

The vectors , ,n N P and v  are defined in the same way 

as y . The likelihood function (9) can then be rewritten 

as:  
~ Binomial( , ).y n P      (11) 

 For the regression (10), we define a 7IJ   design 

matrix X  with each row being an indicator where 

only the  r i th element is one and all remaining 

elements are zeros. We collect 1 7( ,..., )  α . Then 

X α  gives a vector to indicate the region each element 
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in v  belongs to. By the same methods, we create a 

IJ J  design matrix 
  J IX I 1  with vector 

( , ..., )
1
   Jβ  where JI  is an identity matrix of size

J , I1 is a vector with all ones of size I  and   is the 

Kronecker product. For the county attributes, let 

1 2 3 4( , , , )      and 1 2 3 4( , , , )i i i i ix x x x x , then

1 1 2 2 3 3 4 4 'i i i ix x x x        ix . The design matrix 

for   can be written as ( , ..., )
1

 c J IX 1 x x . For the 

random spatial effect iu , let 1( ,..., )Iu u u . The design 

matrix for u is  u J IX 1 I . Under all these 

definitions, model (10) can be rewritten as  
 

       c uIJv 1 X α X β X X u       (12) 

where   a size IJ  vector collects all ij  in the same 

way as v . 
 

Prior Distributions on the Regression 
Parameters 

     Flat priors are used for parameters  ,α ,β , and  . 

We assume independence among all these parameters. 
Normal distributions with large variances are used as 
their prior distributions:  
 

~ (0, ), ~ ( , ), ~ ( , ), ~ ( , ),7 4
     N N N NJα 0 I β 0 I 0 I    (13) 

 where  ,mN    indicate a multivariate normal 

distribution of dimension m , 0  is a vector of zeros and 

I  is an  identity matrix with dimensions corresponding 
to the multivariate normal distribution. Here we use a 
large variance   for the purpose of non-informative 

priors. 
For the over-dispersion parameter , we assume  
 

~ ( , ),
0
NIJ 0 I      (14) 

 where 0  is the variance parameter for . 

We used a CAR model for the spatial effect 

1( ,..., )Iu u u  in our analysis. We have a brief review 

here. For each iu  defined at county i , the CAR model 

assumes it has at least one neighboring county. We use 

'i i  to denote that county 'i  is adjacent to i . Based on 

the locations for all the counties, let ( )  c I Ii i
C  be an 

adjacency matrix describes the neighboring structure of 

the counties in MO. The element ' 1i ic   if county 'i  

adjacent to county i  and ' 0i ic   otherwise. By 

convention, a county will not be the neighbor of itself so 

we define 0iic  . Then the CAR model specifies the 

conditional densities of iu  given all the other variables 

to be:  

 , ' , ,
' '

'

   


 
 
 

u u i i N ui i i
i i

∣      (15) 

 where 0   specifies the conditional variance, '

'

i

i i

u


  

is the sum of neighboring variables around county i , 
and   specifies the strength of the relationship 

between county i  and its neighbors. It has been shown 
that (15) is equivalent to the multivariate normal 
distribution [18]. 
 

1
[ , ] ~ ( , ( ) ).   


NIu 0 I C∣      (16) 

 The matrix 
1

( ) 


I C  need to be positive definite, 

which requires   in the range:  

  

1 1
, ,

min  max i i


 


 
 

     (17) 

 where the i s are eigen values of the adjacency matrix 

C . For counties in Missouri, the range for  is

 min max,  , where 0.347
min

   and 0.173max  . 

 

Selection of Hyperpriors 

     Parameters in the priors distribution need to be 
specified for a full Bayesian analysis. The variance 

parameter 0  in (14) was given an Inverse-Gamma 

 0 0,a b  prior distribution with density proportional to  

  

0

0
0 0 0 01

1 0

1
[ | , ] exp , for  0.

a

b
a b 

 


  

 
    (18) 

 Here we use 0 0 0[ | , ]a b  to denote the probability 

density function of 0  conditional on 0a and 0b . 

The parameter   controls the strength of spatial 

association and is restricted in SEER (17). Thus we used 
a uniform prior distribution  
  

 min maxUnif , .         (19) 

To complete our hierarchical model, we still need a 

prior on the variance parameter   in (16). Instead of 

assigning a prior distribution on   independently from

0 , we connect 0  with   by the noise-to-signal ratio

0 /   . We adapted the idea from Cheng and 
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Speckman (2012) [19], where they used a scaled Pareto 
prior on   in Bayesian spline settings,  

  

2
, 0.

( )

a
a

a
 


    

∣      (20) 

 The use of noise-to-signal ratio has the benefit of 
introducing dependence between unstructured error   
and spatially structured random effect u  through their 
variance parameter. If we define the proportion of 
spatial variance as  
  

0

,



 




     (21) 

 then the   is distributed as  

  

  2
[ | ] .

[ 1 1]

a
a

a





 
     (22) 

 In this sense, the total variation is separated into the 

structured spatial variation with proportion   and the 

unstructured random noise with proportion 1  . 

Figure 3 shows the density plot of   with 0.5,1a   

and 2 . When 1a  ,  Uniform 0,1  ; when 1a  , 

more weight is put on the spatial random effect; when 

1a  , more weight is put on the unstructured random 

effects. In our application, we choose 1a   so that  
  

 [ | 1] Unif 0,1 ,a        (23) 

which treats the spatial variation and unstructured 
error variation equally likely. 
 
 

 

Figure 3: Prior distributions of spatial variance 

proportion under different values of a . 

 
 

Estimates of CRCS Prevalence 

     Recall in (8) ijZ  is needed for county-level CRCS 

prevalence estimates. From our hierarchical model, the 

posterior predictive distribution of ijZ  is  

| , , ~ Binomial( , )Z N n Pij ij ij ijy n N      (24) 

 with expected value [ | , , ] ( ) E Z N n Pij ij ij ijy n N . 

Then the prevalence can be estimated as  

 

, ,( )
1 1ˆ ( | , , ) , ,

[E[Z

.

| ] Y ]

1
1

 
 

  








 
 
 
 
 

J
J

Z Y ij ijij ij
j j

P E P Ei i J J
N Nij ijj

j

y n N

y n N y n N∣                  (25) 

 

     Posterior distributions of ijP  can be obtained from 

our Bayesian hierarchical models, thus posterior 

predictive distribution of ˆ
iP  can also be obtained. 

 

Results 

     We fit the model described in previous section with 
2012 MO-BRFSS data. We treat the regression model 
(12) for the linear predictor v  as our full model, which 
contains all covariates available in our analysis: the 
demographic information, county attributes and 
random spatial effects. However, not all covariates may 
be needed to produce reasonable estimates. We want to 

 know how good the estimates are with the absence of 
some covariates. Three additional models with fewer 
covariates were fitted. Table 2 contains the forms of all 
different models we checked. Model 1 is our full model 
contains all covariates. In Model 2 we remove the 
random county effect. This is considered because with 
the presence of county attributes and the sparsity of our 
data, the random county effect can be hard to estimate. 
Model 3 only contains the demographic covariates and 
the random county effect, which mimics the situation 
where county attributes are not available. In the end, 
Model 4 is the simplest model including only the 
demographic covariates. Note that the regional effects 
were retained for all models. 
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 Covariates v  

Model 1 demographic + county attributes + spatial 3
      cIJ1 X α X β X X u   

Model 2 demographic + county attributes      cIJ1 X α X β X   

Model 3 demographic + spatial 3
     IJ1 X α X β X u   

Model 4 Demographic     IJ1 X α X β   

Table 2: Models with different covariates. 
 

Computation 

     A Markov Chain Monte Carlo (MCMC) algorithm was 
used to generate the posterior distributions of 
parameters in our model. A Gibbs sampling algorithm 
was implemented in R and C++ with the full conditional 
densities derived in Appendix. The full conditional 
distribution for ( , ', ', ')   cψ α β  is multivariate 

normal distributions. The full conditional distribution 

for 0  is inverse-gamma distributions. These random 

variables can be sampled directly with available 
software. For all the other parameters, Adaptive 
Rejection Metropolis Sampling (ARMS) introduced in 
Gilks, Best, and Tan (1995) [20] was used to get the 
posterior samples via a C++ code modified from the C 
code by Gilks [21]. In our application, the following 
hyper parameter values were used:  
  

4
1, 10 .

0 0
   a b a      (26) 

 
     We used 20,000 posterior samples for all models in 
Table 2 after discarding the first 10,000 ones. 
Convergences were monitored via trace plots and 
posterior density plots. 
 

Model Evaluation 

     In our application, 20,000 posterior samples of ˆ
iP  

were obtained for each county i  based on the posterior 

predictive distribution in (25). The mean ˆ
ip  of the 

posterior predictive distribution was used as the 

estimate of iP . We define 1
ˆ ˆ( ,..., )Ip p p  to be the 

estimates for all counties from MO-BRFSS. The direct 

HT estimates of iP s from MO-CLS were also obtained as 

our “true” values for comparison and we denote them as

1( ,..., )CLS CLS CLS

Ip p p . Figure 4 contains the scatter 

plots of estimates from MO-BRFSS against CLS for 
Models 1, 2, 3 and 4. The closer are the points from the 
diagonal line, the better our estimates are. 
 

     To evaluate the performance of different models in 
Table 2, we measure the closeness between the 
estimates from one of the four models and the estimates 
from CLS. We used the mean absolute difference (MAD), 
the Pearson correlation and Spearman correlation as 
three metrics. Table 3 contains the results for all model.  
 
     Smaller values of MAD and larger values of 

Pearson/Spearman correlation will indicate p  is closer 

to
CLS

p . Firstly, we notice that the MAD and Pearson 

Correlations are consistent with each other. A model 
with a smaller MAD value will have a Pearson larger 
correlation value. However, the Spearman correlation 
shows a different trend when comparing Models 1 and 
2, or Models 3 and 4. Secondly, by comparing Models 1 
and 2 with Models 3 and 4, we notice the presence of 
county attributes covariates improved our estimates. 
Thirdly, by comparing Model 1 with Model 2, or Model 3 
with Model 4, we notice that the inclusion of the 
random county effect performs slightly worse in terms 
of MAD and Pearson correlation. However, the random 
county effect slightly increases the Spearman 
correlation. This can be noticed from Figure 4 as the 
points for Models 1 and 3 spread more evenly along the 
diagonal line than Models 2 and 4. But the improvement 
is rather small. In situations where a large amount of 
counties with zero or small sample sizes, the spatial 
effects are hard to make a difference. However, it does 
not hurt much to include random spatial effect when 
prediction is our main interest. Finally, Models 1 and 2 
performs the best based on our criteria and the 
differences between them is negligible. For illustration, 
we mapped the CRCS prevalences estimates from Model 
1 in Figure 5, which also contains the spatial plots of the 
estimates from CLS for compression. The white color 
represents the statewide CRCS prevalence estimated 
from CLS, which is around 0.66. In general, estimates 
from Model 1 differed from CLS by 0.05118 (or 5.118%) 
on average. Accurate county prevalence estimates may 
not be obtained solely from MO-BRFSS data. However, 
the spatial variation of CRCS prevalence for all counties 
can be reflected by MO-BRFSS data if we comparing the 
two spatial plots in Figure 5. 
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a: Model 1 

 

b: Model 2 

 
c: Model 3 

 

d: Model 4 

 

Figure 4: Scatter plots of estimates from MO-BRFSS versus CLS for Models 1, 2, 3 and 4. 
 
 

 
MAD Pearson Spearman 

Model 1 0.05118 0.582 0.606 

Model 2 0.04949 0.591 0.603 

Model 3 0.05894 0.487 0.514 

Model 4 0.05887 0.491 0.507 

Table 3: Model evaluation. 
 

 

 

Figure 5: Spatial plots for CRCS prevalence 
estimated from CLS and MO-BRFSS Model 2. 

 

Discussion 

     In this paper, we explored the possibilities of utilizing 
MO-BRFSS data for county-level CRCS prevalence study. 
Model-based survey analysis methods were combined 
with small area techniques to produce county CRCS 
prevalence in Missouri. Adjustments based on 2010 
Census population data were used to correct the bias 
from MO-BRFSS data, which has no weighting variable 
for a regular county-level survey analysis. Besides the 
demographic covariates, we include county attributes to 
improve our estimates. However, due to zero or small 
sample sizes for many counties in MO-BRFSS data, our 
attempt of including random county effect did not bring 
us any significant improvements in our estimates. 
 
     We classified people into 12 categories based on their 
age groups, gender and race. Ideally, finer classification 
with more demographic variables can provide more 
accurate estimates. However, our MO-BRFSS data does 
not support such fine categories. In general, our model 
based on MO-BRFSS data can provide similar but less 
accurate point estimates compared to CLS and spatial 
variation can be effectively investigated. 
 
      

CLS BRFSS

0.46
Avg
 0.66

0.76
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     The estimates from CLS were treated as “true” values 
for comparison. However, the variance of the HT 
estimator was not considered. In addition, we assumed 
the prevalences of CRCS are the same between the year 
2011 and 2012. The state-level prevalence estimates 
between them are very close. However, we don’t know 
if the similarity holds at county-level. 
 
     We only studied CRCS prevalence in our paper. In 
general, BRFSS data contain many health-related 
questions so that similar studies can be conducted. 
However, zero or small sample sizes for some counties 
may still be a block when one tries to produce accurate 
county-level estimates. 
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