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Abstract 

Cholestatic liver diseases such as primary biliary cholangitis and primary sclerosing cholangitis are characterized by bile 

duct inflammation and damage followed by obstruction or impaired bile flow leading to liver fibrosis. Cholangiocytes are 

the target of therapies of cholangiopathies. Although bile duct hyperplasia caused by elevated cholangiocyte proliferation 

is characteristic during cholestatic liver injury, accumulating evidence shows that enhanced cellular senescence in 

cholangiocytes is an important factor for pathophysiology of cholangiopathies. Senescent cholangiocytes secrete elevated 

levels of proinflammatory cytokines and chemokines that activate hepatic stellate cells or myofibroblasts leading to 

fibrogenesis in the liver. Previous studies suggest that endotoxin or lipopolysaccharide derived from gut bacteria may be 

a key factor for cholangiocyte senescence in cholangiopathies. This review summarizes current understandings for 

functional roles of cellular senescence in cholangiocytes during cholestatic liver injury. 
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Abbreviations: BA: Biliary Atresia; BDL: Bile Duct 
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Cholangitis; SA-β-gal: Senescence-associated β-
galactosidase; SASP: Senescence-Associated Secretory 
Phenotype; TAA: Thioacetamide; SAHF: Senescence-
Associated Heterochromatin Foci. 

 
 
 

Introduction 

     Cellular senescence is a state of cells that is caused by 
replication stress and/or various DNA or cellular damage. 
It is characterized by strong and irreversible cell cycle 
arrest [1-3].  
 
 
 
     Senescent cells also show morphological change, 
increased activity of senescence-associated β-
galactosidase (SA-β-gal), elevated expression of 
senescence-associated genes, such p16 and p21, and 
senescence-associated heterochromatin foci (SAHF), 
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which are specialized domains of heterochromatin that 
lead to suppression of proliferation-promoting genes [4]. 
Senescent cells are functionally and metabolically active, 
and they secrete elevated or different compositions of 
secretome, which is referred as senescence-associated 
secretory phenotype (SASP), compared to normal cells 
including extracellular vesicles, proinflammatory 
cytokines, chemokines, growth factors, and profibrotic 
factors [4-6]. For more information about mechanisms of 
cellular senescence, see recent reviews [7-9]. 
 
     Recent studies have shown that cellular senescence can 
be identified in cholangiopathies or cholestatic liver 
injuries, such as primary biliary cholangitis (PBC), 
primary sclerosing cholangitis (PSC), and biliary atresia 
(BA). Cholangiocytes are bile duct epithelial cells and they 
are a primary target of therapies for cholestatic liver 
diseases. Accumulating evidence suggests that cellular 
senescence in cholangiocytes may play a key role in 
pathophysiology of cholangiopathies [10,11]. This review 
summarizes current understandings of cholangiocyte 
senescence during cholestatic liver injuries. 
 

Association Between Cholangiocyte Senescence 
and Cholestatic Liver Injury 

     Cholangiopathies, such as PBC and PSC, are 
characterized by activated proliferating cholangiocytes 
that lead to bile duct hyperplasia or ductular reaction. 
Cholangiocytes are quiescent at normal conditions but are 
activated by various mediators including cytokines, 
hormones, or bile acids that are secreted in the liver at 
disease conditions [12,13]. Cholangiocytes are 
heterogeneous cells, small and large cholangiocytes, 
depending on the diameter of bile ducts (<15 µm or >15 
µm diameter for small or large cholangiocytes, 
respectively) [14,15]. Small and large cholangiocytes have 
different functions as well as protein expressions in vivo 
[16-19]. In experimental animal models of cholestatic 
liver injuries using bile duct ligation (BDL), large but not 
small cholangiocytes proliferated in BDL rats [20]. During 
acute carbon tetrachloride feeding, large cholangiocytes 
were damaged showing elevated apoptosis, but small 
cholangiocytes started proliferation [21]. Kamimoto, et al. 
have performed three-dimensional tracking of labeled 
cholangiocytes during thioacetamide (TAA)-induced liver 
injury in vivo and have found that some cholangiocytes 
but not all are proliferative contributing to dynamic 
remodeling of biliary tree, and those proliferative 
cholangiocytes are scattered in the biliary epithelial tissue 
[22]. These studies show that cholangiocytes are 
heterogeneous in cell functions and proliferation during 
liver damage. 

 
     Although elevated cholangiocyte proliferation leading 
to bile duct hyperplasia is characteristic during 
cholestatic liver injuries, previous studies have 
demonstrated that cellular senescence in cholangiocytes 
is also characteristic in cholangiopathies. Sasaki, et al. 
have analyzed liver tissue samples from PBC patients and 
have found that small bile ducts in early stage of PBC 
patients show highly elevated cellular senescence 
compared to those of healthy individuals detected by SA-
β-gal activity and expression of senescence markers p16 
and p21 [23]. Tabibian, et al. have also analyzed liver 
samples of PBC and PSC patients and have demonstrated 
that cholangiocytes in liver tissues of PBC and PSC 
patients have elevated expression levels of senescence 
markers including p16 as well as SASP markers including 
interleukin (IL)-6, IL-8, and CCL2 that are 
proinflammatory cytokines causing biliary inflammation 
[24]. 
 
     In studies using experimental animal models of 
cholestatic liver injuries, Mdr2-/- mice are commonly used 
as a model of PSC [25-27]. Isolated cholangiocytes from 
Mdr2-/- mice showed elevated expression levels of p16 
and p21 compared to cholangiocytes from wild-type mice 
[28]. Cultured cholangiocytes isolated from PSC patients 
showed higher SA-β-gal activity, lower cell proliferation, 
and elevated expression of IL-6 and IL-8 compared to 
control normal human cholangiocytes [29]. Another study 
has also demonstrated that cultured cholangiocytes 
isolated from PSC patients are senescent showing 
elevated SA-β-gal activity and p16 expression [30]. These 
studies indicate that some cholangiocytes are not 
proliferative but senescent showing SASP characteristics 
during PBC or PSC progression, and this may contribute 
to disease conditions in the liver or progression of 
cholangiopathies. 
 

The Cause of Cholangiocyte Senescence in 
Cholestatic Liver Injury 

     Although detailed mechanisms for pathophysiology of 
cholangiocyte senescence in cholangiopathies are not 
fully understood to date, a potential key mediator is 
bacteria-associated endotoxin or lipopolysaccharide 
(LPS). LPS is a strong senescence inducer and stimulation 
with LPS introduces cellular senescence in various tissues 
and cells [31-33]. Sasatomi, et al. have analyzed liver 
specimen from PBC and PSC patients and have identified 
accumulated endotoxin in cholangiocytes of these 
patients using a monoclonal antibody against lipid A [34]. 
Fluorescence intensity of lipid A in cholangiocytes was 
over ten times higher in PBC or PSC patients compared to 
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healthy individuals [34]. Another study has demonstrated 
that PBC patients have elevated small bowel permeability 
compared to healthy individuals detected by lactulose-
mannitol test [35]. Endotoxin/LPS are a strong inducer of 
inflammatory responses by activating Kupffer cells 
leading to inflammation and fibrogenesis in the liver [36]. 
Although short-term LPS stimulation induces cell 
proliferation and proinflammatory cytokine production in 
cholangiocytes in vitro, [37,38] long-term LPS stimulation 
induces cellular senescence in cholangiocytes in vitro [24]. 
Senescent cholangiocytes induced by LPS stimulation 
secreted elevated proinflammatory cytokines [24]. 

 
     During cholestatic liver injuries, cholangiocytes 
become senescent and secrete various cytokines such as 
IL-6 and TGF-β1 [28-39]. Kupffer cells or bone marrow-
derived macrophages in the liver also produce those 
cytokines when activated at disease conditions [36]. TGF-
β1 is a key factor for fibrogenesis because it activates 
hepatic stellate cells that are the major source of 
extracellular matrix proteins leading to liver fibrosis 
[40,41]. Figure 1 summarizes functional roles of 
senescent cholangiocytes in cholangiopathies. 

 
 

 
 

Figure 1: During cholangiopathies, intestinal permeability is elevated and bacteria-derived endotoxin/LPS are 
accumulated in cholangiocytes. Some cholangiocytes are proliferative but others are senescent. Senescent cholangiocytes 
show SASP characteristics with elevated secretion of cytokines and fibrotic factors such as IL-6 and TGF-β1. TGF-β1 
activates hepatic stellate cells and/or myofibroblasts leading to fibrogenesis in the liver. 
 
 

Conclusion and Future Perspectives 

     Current studies suggest that some cholangiocytes are 
proliferative but others are senescent and these senescent 
cholangiocytes may play a key role in pathophysiology of 
liver inflammation and fibrosis during cholestatic liver 
injuries via secretion of SASP such as IL-6 and TGF-β1. 

Cholangiocyte senescence is a potential therapeutic target 
to manage or cure liver conditions in cholangiopathies. 
Moncsek, et al. has found that Bcl-xL is an important 
factor for fibroblast activation by senescent 
cholangiocytes, and has demonstrated that inhibition of 
Bcl-xL attenuates liver fibrosis in Mdr2-/- mice [42]. 
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     Cellular senescence in cholangiopathies is a relatively 
new research aspect in this field. Majority of current 
studies has identified cholangiocyte senescence by SA-β-
gal activity assay using liver sections, detection of gene 
expression for p16 and/or p21 using liver tissues or 
isolated cholangiocytes, or detection of SASP such as IL-6 
or TGF-β1 by PCR or ELISA. Results obtained by those 
techniques, however, could vary depending on the stage 
of senescence in cholangiocytes [4]. Although further 
studies are required to elucidate detailed mechanisms 
and signaling pathways involved in cellular senescence in 
cholangiocytes, novel therapies could be developed by 
targeting senescent cholangiocytes. 
 
     In conclusion, cellular senescence in cholangiocytes is 
associated with liver damage and fibrosis in cholestatic 
liver injuries, and may be a potential target for novel 
therapies. 
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